Competences

- Advanced Design techniques for MMICs and Hybrid circuits design for space, military and telecom applications
- Advanced Techniques for active device modeling for specific applications
- Characterization and measurements of active devices and circuits
- Implementation of prototype hybrid circuits and test jig for MMIC evaluation
- Measurement Set-up design for Small- and Large-Signal Characterizations

Design: Key Points (1)

- Main research activities on advanced design methodologies
- Main CAD tools for circuit design
 Standard Simulations
 - <u>S-parameter</u> (small signal simulations)
 - Harmonic Balance (non-linear simulations)
 - •Load Pull (Pout, PAE, Gain, IMD, etc...)
 - •<u>2-Tones</u> (Linearity, IMD, etc...)
 - Optimization-Tuning (Matching Networks, etc...)
 - Mixer Simulations

MEC s.r.l. – www.mec-mmic.com

Design: Key Points (2)

- Different kind of analysis to guarantee circuit stability:
 - Small Signal stability
 - Differential Stability (Odd-mode)
 - Large signal parametric stability
- Design for <u>Yield</u>
 - Sensitivity Analysis and DFM (*Design For Manufacturing*) for production Yield optimization
- Electromagnetic Simulation
 Passive Matching Networks optimized by proper EM simulations.

Modeling Activities

Intensive Modeling of active devices to best fit their behavior for different circuit functions (HPA, Mixer, LNA, H-Lin, Switch, etc..)

2-different Modeling Approaches

• Empirical Approach

Based on specific tests and characterizations of the devices

[▶]•<u>EM Approach</u>

Based on Electromagnetic simulations of device passive structures to enhance model periphery scaling accuracy

MEC s.r.l. – www.mec-mmic.com