+39 334 9529 414
info@microrel.com

What is MRAM and Why is it Critical to Mission Success?

What is MRAM and Why is it Critical to Mission Success?

Cosmic Radiation wreaks havoc on Electronic components critical to the mission success of satellites and other spacecraft.

 Radiation-hardened circuits – like the Magneto Resistive Random-Access Memory (MRAM) ICs Honeywell produces – are built to withstand the barrage of ionizing radiation and radiation effects commonly found in space. The exact conditions a spacecraft will encounter depends on its mission, but whether it’s taking a trip around the sun or heading to the far reaches of the solar system, every component onboard has to be rugged enough to withstand the extreme conditions of space.

For example, Earth is surrounded by two radiation belts that spacecraft must pass through or operate within. Now consider Jupiter, the destination for several upcoming space mission, which has radiation belts 10,000 times stronger than Earth’s. Solar winds and galactic cosmic rays – particle fragments from exploded stars – are found everywhere in space. Spacecraft and all the equipment they carry need to be designed to survive and function normally under these extremely punishing conditions.

Unlike conventional circuits, MRAM circuits use magnetic spintronic elements in place of collections of electron charges to store data. Exposure to the charged ions in outer space can disrupt the electron charges on conventional chips, causing them to fail or malfunction. That’s not an issue with MRAMs, in which magnetic coupling in magnetic spintronic elements mitigates sensitivity to charged ions and ionizing radiation.

MRAMs also offer nonvolatility in addition to fast processing, greater density and low power consumption when compared to other memory technologies such as static RAM or dynamic RAM circuits which are volatile memories.

MRAMs are nonvolatile, to allow data to be retained even when power is removed to support system recovery and “instant on” computing, and offer practically unlimited durability in terms of cycling and retaining data. They can significantly improve microelectronic products and system performance by storing greater amounts of data and enabling it to be accessed faster with greater reliability. MRAM is considered a universal memory that can be applied to any use, from system computing to storage.

Honeywell packs a lot of performance into its MRAM circuits, according to Lisa Napolitano, Sr. Director of Microelectronics for Honeywell Aerospace. “The circuits we provide for NASA, other U.S. and foreign space agencies, and the commercial space industry need to perform flawlessly for 15-20 years or even more,” she said. “Replacing them if they fail is obviously not an option so they simply can’t fail.”

In fact, unlike the most popular nonvolatile memory type, flash memory, MRAM never wears out and can theoretically be written to and read from until the physical material itself degrades. This makes the Honeywell MRAM the perfect choice for space exploration missions and satellites that will remain in orbit for an extended period of time.

Honeywell has more than 25 years of experience in developing and producing microelectronics for all kinds of aerospace and defense applications. Katti was part of a team of Honeywell engineers that worked with the Defense Advanced Research Projects Agency (DARPA) and an industry team that included Honeywell, IBM and Motorola to pioneer the MRAM technology beginning in the 1990s.

To read full Article, please click here.

For ITALY Market contact Mr. DANILO LAUTA 
MICROREL – Via Guido Rossa 34, CP.00065 – Fiano Romano, ROME, ITALY
Email: danilo.lauta@microrel.com
Phone : +39 334 9529414
Web: www.microrel.com
Enquiries : info@microrel.com
In Partnership with:
Rosenheimer Landstraße 117, D-85521 Ottobrunn-Riemerling, Germany
Phone: +49 (0)89 6602923
Email: sales@protec-semi.de
Web: www.protec-semi.de

CONTACT MODULE

 

EnglishFrenchGermanItalianPortugueseSpanish